quadratic-residue code - translation to russian
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

quadratic-residue code - translation to russian

IN NUMBER THEORY CONCERNING PRIMES
Euler criterion; Euler's quadratic residue theorem; Euler quadratic residue theorem; Euler's Criterion

quadratic-residue code      

математика

квадратично-вычетный код

quadratic residue         
INTEGER THAT IS A PERFECT SQUARE MODULO SOME INTEGER
Quadratic residues; Quadratic non-residue; Quadratic congruences; Quadratic congruence; Modular square root; Square root modulo n; Square root mod n; Quadratic residuosity; Quadratic nonresidue; Least quadratic non-residue; Quadratic excess

общая лексика

квадратичный вычет

quadratic congruence         
INTEGER THAT IS A PERFECT SQUARE MODULO SOME INTEGER
Quadratic residues; Quadratic non-residue; Quadratic congruences; Quadratic congruence; Modular square root; Square root modulo n; Square root mod n; Quadratic residuosity; Quadratic nonresidue; Least quadratic non-residue; Quadratic excess
квадратичное сравнение

Definition

ФРАНЦУЗСКИЙ ГРАЖДАНСКИЙ КОДЕКС
1804 (Кодекс Наполеона) , действующий гражданский кодекс Франции. Составлен при активном участии Наполеона. Включает нормы гражданского, семейного, процессуального, частично трудового права. Кодекс закрепил свободу частной собственности, провозгласив это право священным и неприкосновенным.

Wikipedia

Euler's criterion

In number theory, Euler's criterion is a formula for determining whether an integer is a quadratic residue modulo a prime. Precisely,

Let p be an odd prime and a be an integer coprime to p. Then

a p 1 2 { 1 ( mod p )  if there is an integer  x  such that  a x 2 ( mod p ) , 1 ( mod p )  if there is no such integer. {\displaystyle a^{\tfrac {p-1}{2}}\equiv {\begin{cases}\;\;\,1{\pmod {p}}&{\text{ if there is an integer }}x{\text{ such that }}a\equiv x^{2}{\pmod {p}},\\-1{\pmod {p}}&{\text{ if there is no such integer.}}\end{cases}}}

Euler's criterion can be concisely reformulated using the Legendre symbol:

( a p ) a p 1 2 ( mod p ) . {\displaystyle \left({\frac {a}{p}}\right)\equiv a^{\tfrac {p-1}{2}}{\pmod {p}}.}

The criterion first appeared in a 1748 paper by Leonhard Euler.

What is the Russian for quadratic-residue code? Translation of &#39quadratic-residue code&#39 to Rus